Copied to
clipboard

G = C7×C22⋊C8order 224 = 25·7

Direct product of C7 and C22⋊C8

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C7×C22⋊C8, C22⋊C56, C28.65D4, C23.2C28, C14.8M4(2), (C2×C14)⋊1C8, (C2×C56)⋊3C2, (C2×C8)⋊1C14, (C2×C4).3C28, C2.1(C2×C56), (C2×C28).6C4, C4.16(C7×D4), C14.11(C2×C8), (C22×C4).2C14, C22.9(C2×C28), (C22×C14).3C4, (C22×C28).3C2, C2.2(C7×M4(2)), C14.20(C22⋊C4), (C2×C28).135C22, C2.2(C7×C22⋊C4), (C2×C4).31(C2×C14), (C2×C14).38(C2×C4), SmallGroup(224,47)

Series: Derived Chief Lower central Upper central

C1C2 — C7×C22⋊C8
C1C2C4C2×C4C2×C28C2×C56 — C7×C22⋊C8
C1C2 — C7×C22⋊C8
C1C2×C28 — C7×C22⋊C8

Generators and relations for C7×C22⋊C8
 G = < a,b,c,d | a7=b2=c2=d8=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

2C2
2C2
2C22
2C4
2C22
2C14
2C14
2C2×C4
2C8
2C2×C4
2C8
2C2×C14
2C28
2C2×C14
2C56
2C2×C28
2C56
2C2×C28

Smallest permutation representation of C7×C22⋊C8
On 112 points
Generators in S112
(1 69 16 81 25 73 17)(2 70 9 82 26 74 18)(3 71 10 83 27 75 19)(4 72 11 84 28 76 20)(5 65 12 85 29 77 21)(6 66 13 86 30 78 22)(7 67 14 87 31 79 23)(8 68 15 88 32 80 24)(33 61 105 49 97 41 89)(34 62 106 50 98 42 90)(35 63 107 51 99 43 91)(36 64 108 52 100 44 92)(37 57 109 53 101 45 93)(38 58 110 54 102 46 94)(39 59 111 55 103 47 95)(40 60 112 56 104 48 96)
(2 40)(4 34)(6 36)(8 38)(9 112)(11 106)(13 108)(15 110)(18 96)(20 90)(22 92)(24 94)(26 104)(28 98)(30 100)(32 102)(42 76)(44 78)(46 80)(48 74)(50 84)(52 86)(54 88)(56 82)(58 68)(60 70)(62 72)(64 66)
(1 39)(2 40)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 112)(10 105)(11 106)(12 107)(13 108)(14 109)(15 110)(16 111)(17 95)(18 96)(19 89)(20 90)(21 91)(22 92)(23 93)(24 94)(25 103)(26 104)(27 97)(28 98)(29 99)(30 100)(31 101)(32 102)(41 75)(42 76)(43 77)(44 78)(45 79)(46 80)(47 73)(48 74)(49 83)(50 84)(51 85)(52 86)(53 87)(54 88)(55 81)(56 82)(57 67)(58 68)(59 69)(60 70)(61 71)(62 72)(63 65)(64 66)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)

G:=sub<Sym(112)| (1,69,16,81,25,73,17)(2,70,9,82,26,74,18)(3,71,10,83,27,75,19)(4,72,11,84,28,76,20)(5,65,12,85,29,77,21)(6,66,13,86,30,78,22)(7,67,14,87,31,79,23)(8,68,15,88,32,80,24)(33,61,105,49,97,41,89)(34,62,106,50,98,42,90)(35,63,107,51,99,43,91)(36,64,108,52,100,44,92)(37,57,109,53,101,45,93)(38,58,110,54,102,46,94)(39,59,111,55,103,47,95)(40,60,112,56,104,48,96), (2,40)(4,34)(6,36)(8,38)(9,112)(11,106)(13,108)(15,110)(18,96)(20,90)(22,92)(24,94)(26,104)(28,98)(30,100)(32,102)(42,76)(44,78)(46,80)(48,74)(50,84)(52,86)(54,88)(56,82)(58,68)(60,70)(62,72)(64,66), (1,39)(2,40)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,112)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,95)(18,96)(19,89)(20,90)(21,91)(22,92)(23,93)(24,94)(25,103)(26,104)(27,97)(28,98)(29,99)(30,100)(31,101)(32,102)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,73)(48,74)(49,83)(50,84)(51,85)(52,86)(53,87)(54,88)(55,81)(56,82)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,65)(64,66), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)>;

G:=Group( (1,69,16,81,25,73,17)(2,70,9,82,26,74,18)(3,71,10,83,27,75,19)(4,72,11,84,28,76,20)(5,65,12,85,29,77,21)(6,66,13,86,30,78,22)(7,67,14,87,31,79,23)(8,68,15,88,32,80,24)(33,61,105,49,97,41,89)(34,62,106,50,98,42,90)(35,63,107,51,99,43,91)(36,64,108,52,100,44,92)(37,57,109,53,101,45,93)(38,58,110,54,102,46,94)(39,59,111,55,103,47,95)(40,60,112,56,104,48,96), (2,40)(4,34)(6,36)(8,38)(9,112)(11,106)(13,108)(15,110)(18,96)(20,90)(22,92)(24,94)(26,104)(28,98)(30,100)(32,102)(42,76)(44,78)(46,80)(48,74)(50,84)(52,86)(54,88)(56,82)(58,68)(60,70)(62,72)(64,66), (1,39)(2,40)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,112)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,95)(18,96)(19,89)(20,90)(21,91)(22,92)(23,93)(24,94)(25,103)(26,104)(27,97)(28,98)(29,99)(30,100)(31,101)(32,102)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,73)(48,74)(49,83)(50,84)(51,85)(52,86)(53,87)(54,88)(55,81)(56,82)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,65)(64,66), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112) );

G=PermutationGroup([[(1,69,16,81,25,73,17),(2,70,9,82,26,74,18),(3,71,10,83,27,75,19),(4,72,11,84,28,76,20),(5,65,12,85,29,77,21),(6,66,13,86,30,78,22),(7,67,14,87,31,79,23),(8,68,15,88,32,80,24),(33,61,105,49,97,41,89),(34,62,106,50,98,42,90),(35,63,107,51,99,43,91),(36,64,108,52,100,44,92),(37,57,109,53,101,45,93),(38,58,110,54,102,46,94),(39,59,111,55,103,47,95),(40,60,112,56,104,48,96)], [(2,40),(4,34),(6,36),(8,38),(9,112),(11,106),(13,108),(15,110),(18,96),(20,90),(22,92),(24,94),(26,104),(28,98),(30,100),(32,102),(42,76),(44,78),(46,80),(48,74),(50,84),(52,86),(54,88),(56,82),(58,68),(60,70),(62,72),(64,66)], [(1,39),(2,40),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,112),(10,105),(11,106),(12,107),(13,108),(14,109),(15,110),(16,111),(17,95),(18,96),(19,89),(20,90),(21,91),(22,92),(23,93),(24,94),(25,103),(26,104),(27,97),(28,98),(29,99),(30,100),(31,101),(32,102),(41,75),(42,76),(43,77),(44,78),(45,79),(46,80),(47,73),(48,74),(49,83),(50,84),(51,85),(52,86),(53,87),(54,88),(55,81),(56,82),(57,67),(58,68),(59,69),(60,70),(61,71),(62,72),(63,65),(64,66)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)]])

C7×C22⋊C8 is a maximal subgroup of
C23.30D28  (C22×D7)⋊C8  (C2×Dic7)⋊C8  C22.2D56  Dic7.5M4(2)  Dic7.M4(2)  C56⋊C4⋊C2  C23.34D28  C23.35D28  C23.10D28  C7⋊D4⋊C8  D14⋊M4(2)  D14⋊C8⋊C2  D142M4(2)  Dic7⋊M4(2)  C7⋊C826D4  D28.31D4  D2813D4  D28.32D4  D2814D4  C23.38D28  C22.D56  C23.13D28  Dic1414D4  C22⋊Dic28  D4×C56

140 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F7A···7F8A···8H14A···14R14S···14AD28A···28X28Y···28AJ56A···56AV
order1222224444447···78···814···1414···1428···2828···2856···56
size1111221111221···12···21···12···21···12···22···2

140 irreducible representations

dim1111111111112222
type++++
imageC1C2C2C4C4C7C8C14C14C28C28C56D4M4(2)C7×D4C7×M4(2)
kernelC7×C22⋊C8C2×C56C22×C28C2×C28C22×C14C22⋊C8C2×C14C2×C8C22×C4C2×C4C23C22C28C14C4C2
# reps1212268126121248221212

Matrix representation of C7×C22⋊C8 in GL4(𝔽113) generated by

30000
0100
0010
0001
,
112000
011200
0010
0052112
,
1000
0100
001120
000112
,
112000
04400
0052111
005361
G:=sub<GL(4,GF(113))| [30,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[112,0,0,0,0,112,0,0,0,0,1,52,0,0,0,112],[1,0,0,0,0,1,0,0,0,0,112,0,0,0,0,112],[112,0,0,0,0,44,0,0,0,0,52,53,0,0,111,61] >;

C7×C22⋊C8 in GAP, Magma, Sage, TeX

C_7\times C_2^2\rtimes C_8
% in TeX

G:=Group("C7xC2^2:C8");
// GroupNames label

G:=SmallGroup(224,47);
// by ID

G=gap.SmallGroup(224,47);
# by ID

G:=PCGroup([6,-2,-2,-7,-2,-2,-2,336,361,88]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^2=c^2=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

Export

Subgroup lattice of C7×C22⋊C8 in TeX

׿
×
𝔽